Integral geometry and separation of continuous and discrete spectra in regular representation of PSL (2, R)

M.I. GRAEV

Keldysh Institute of Applied Mathematics Miusskaya Sq 4 125047 Moscow A-47 USSR

> Dedicated to I.M. Gelfand on his 75th birthday

Abstract. The separation of continuous and discrete spectra in regular representation of $PSL(2, \mathbb{R})$ is constructed with methods of integral geometry.

1. Let H be the Hilbert space of functions on the group $PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/$ {± 1} with norm

(1)
$$||f||^2 = \int |f(x)|^2 dx,$$

where dx is an invariant measure, and let T denote the regular representation of $PSL(2, \mathbb{R})$ in H:

 $(T(x)f)(y) = f(yx), x, y \in PSL(2, \mathbb{R}).$

It is known [1] that T is decomposed into irreducible representations of continuous and discrete series. Thus H is direct sum of invariant subspaces, $H = H_c \oplus H_d$, where H_c is decomposed into representations of continuous series, and H_d into representations of discrete series. The problem is to construct this decomposition explicitly: The projectors $P_c: H \to H_c$, $P_d: H \to H_d$ are constructed

Key Words: Integral geometry 1980 MSC: 44A05 in [2]. It turns out that methods of integral geometry allow one to construct simpler operators $J_c : H \to H_c$, $J_d : H \to H_d$, such that $(J_c)^2 = P_c$, $(J_d)^2 = P_d$. Let us formulate the main results of the paper. Later on we interpret H as the space of even functions on $SL(2, \mathbb{R}) = G$.

We define the following operators on the subspace $D \subset H$ of even C^{∞} functions on G with compact support:

$$(J^{(\lambda)}f)(x) = \int_{G} f(y) |Tr(x^{-1}y)|^{\lambda} dy,$$
$$(\hat{J}^{(\lambda)}f)(x) = \int_{G} f(y) |Tr(x^{-1}y\epsilon)|^{\lambda} dy, \quad \epsilon = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

where $\lambda \in \mathbb{C}$. Both integrals converge and are analytic functions of λ in the region $Re\lambda > 0$ for any $f \in D$, $x \in G$. For $Re \lambda < 0$ they are defined by analytic continuation w.r.t. λ .

We put $J_d = J^{(-2)}$, $J_c = \hat{J}^{(-2)}$. Evidently all operators $J^{(\lambda)}$, $\hat{J}^{(\lambda)}$, in particular J_d and J_c commute with representation operators T(x).

THEOREM 1. For any $f \in D$ we have:

$$||J_d f||^2 + ||J_c f||^2 = (2\pi)^4 ||f||^2,$$

where $\|\cdot\|$ is the norm in H.

COROLLARY. The operators J_d , J_c can be extended to bounded operators on H.

THEOREM 2. $J_d H = H_d$, $J_c H = H_c$ (and so $J_d H_c = 0$, $J_c H_d = 0$).

THEOREM 3. $(J_d)^2 = (2\pi)^4 P_d$, $(J_c)^2 = (2\pi)^4 P_c$, where P_d and P_c are projectors onto H_d and H_c respectively.

Proofs are given in section 3.

2. Now we introduce the generalized Radon transform \mathscr{R} related to the projective space \mathbb{P}^3 and establish its connection with operators J_c , J_d . Let F be the space of C^{∞} -functions on $\mathbb{R}^4 \setminus 0$ satisfying the homogeneity condition

(2)
$$f(\lambda x) = \lambda^{-2} f(x)$$
 for any $\lambda \neq 0$

Note [3] that F can be ingerpreted as the space of smooth sections of certain

line bundle over \mathbb{P}^3 .

We define the scalar product on F to be

$$(f_1, f_2) = \int_{\Gamma} f_1(x) \overline{f_2(x)} \,\omega(x),$$

where $\omega(x) = x_1 dx_2 \wedge dx_3 \wedge dx_4 - x_2 dx_1 \wedge dx_3 \wedge dx_4 + x_3 dx_1 \wedge dx_2 \wedge dx_4 - x_4 dx_1 \wedge dx_2 \wedge dx_3$ (*). The integral is over any surface $\Gamma \subset \mathbb{R}^4 \setminus 0$ meeting at one point almost every ray through 0; the homogeneity condition (2) implies that the integral is independent of Γ . Let \overline{F} denote the Hilbert space which is the completion of F w.r.t. the norm $||f|| = (f, f)^{1/2}$.

We introduce the symmetric bilinear form on \mathbb{R}^4 by

$$\langle x, y \rangle = x_1 y_4 - x_2 y_3 - x_3 y_2 + x_4 y_1$$

and define the generalized Radon transform of $f \in F$ to be

$$\mathscr{R}f(x) = (2\pi)^{-2} \int_{\Gamma} f(y) \langle x, y \rangle^{-2} \omega(y),$$

where the integral should be understood in regularized sense, see [3]. The integral does not depend on choice of Γ . It is easy to see that $\Re f \in F(**)$.

It is known [3] that $||\mathscr{R} f|| = ||f||$ for $f \in F$, and that $\mathscr{R}^2 = id$, the identity operator. Therefore, $\mathscr{R} : F \to F$ is an isomorphism, and \mathscr{R} extends to the involutive unitary operator on \overline{F} .

To find the connection of \mathscr{R} with the operator J_c , J_d we use another realization of the space F. For this we interpret a point $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ as the matrix $\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$; then $\langle x, x \rangle = 2 \det x$.

$$\Re f(x) = \int_{\Gamma} f(y) \, \delta(\langle x, y \rangle) \, \omega(y),$$

where $\delta(\cdot)$ is the delta-function, see [3]; the choice of a bilinear form $\langle x, y \rangle$ is inessential. The connection of this transform with the classical Radon transform in three-dimensional affine space can also be found in [3].

^(*) In other words $\omega(x)$ is the internal product of the volume form $dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$ in \mathbb{R}^4 and the radial vector field $X = \sum x_i \partial/\partial x_i$.

^(**) The ordinary Radon transform for \mathbb{P}^3 acts on the space of functions on $\mathbb{R}^4 \setminus 0$ which are homogeneous of degree (-3) as follows:

Choose Γ to be the pair of surfaces $\langle x, x \rangle = 2$, and $\langle x, x \rangle = -2$, i.e. in our interpretation $\Gamma = G \cup \epsilon G$, $\epsilon = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, is the variety of matrices with determinant ± 1 . To each $f \in F$ we associate its restriction on Γ thus realizing F as the space of even functions on Γ . Note that $\omega(y) \mid_{\langle y, y \rangle = 2} = dy$ is an invariant measure on G, and that $\langle x, y \rangle = \pm Tr(yx^{-1})$ if det $x = \pm 1$. It follows that in this new realization of F the norm and the operator \Re take the following form:

(3)
$$||f||^2 = \int_G |f(x)|^2 dx + \int_G |f(\epsilon x)|^2 dx,$$

(4)
$$\mathscr{R}f(x) = (2\pi)^{-2} \int_G f(y) (Tr(yx^{-1}))^{-2} dy +$$

$$+ (2\pi)^{-2} \int_G f(\epsilon y) \left(Tr(\epsilon y x^{-1}) \right)^{-2} dy$$

We define the embedding $D \to F$, $H \to \overline{F}$ assigning to each $f \in H$ the function on Γ which is equal to f(x) if det x = 1, and equal to zero if det x = -1. By (1) and (3) these embedding are isometric. By (4) for any $f \in D$ we have

(5)
$$\Re f(x) = (2\pi)^{-2} \int_G f(y) (Tr(yx^{-1}))^{-2} dy, \text{ det } x = \pm 1.$$

Hence by definition of J_c and J_d we have

PROPOSITION. $J_d f(x) = (2\pi)^2 \ \mathscr{R} f(x), \ J_c f(x) = (2\pi)^2 \ \mathscr{R} f(\epsilon x) \text{ for any } f \in D, x \in SL(2, \mathbb{R}).$

3. Now we prove the theorems. Theorem 1 follows at once from (3), unitarity of \mathcal{R} and the proposition just proven. In fact for $f \in D$ we have:

$$\|f\|^{2} = \|\mathscr{R}f\|^{2} = \int_{G} |\mathscr{R}f(x)|^{2} dx + \int_{G} |\mathscr{R}f(\epsilon x)|^{2} dx =$$
$$= (2\pi)^{-4} \left(\int_{G} |J_{d}f(x)|^{2} dx + \int_{G} |J_{c}f(x)|^{2} dx \right) =$$

$$= (2\pi)^{-4} \left(\|J_d f\|^2 + \|J_c f\|^2 \right).$$

Theorems 2 and 3 follow from the next lemmas 1 - 3.

LEMMA 1. $(2\pi)^{-4} ((J_d)^2 + (J_c)^2) = id.$

Proof. Let $f \in D$, $\varphi = \Re f$. Since $\Re^2 = id$, we have $f = \Re \varphi$, i.e.

$$f(x) = (2\pi)^{-2} \int_{G} \varphi(y) (Tr(yx^{-1}))^{-2} dy + (2\pi)^{-2} \int_{G} \varphi(\epsilon y) (Tr(\epsilon yx^{-1}))^{-2} dy =$$

$$= (2\pi)^{-4} \int_G J_d f(y) (Tr(yx^{-1}))^{-2} dy +$$

+
$$(2\pi)^{-4} \int_G J_c f(y) (Tr(\epsilon y x^{-1}))^{-2} dy =$$

= $(2\pi)^{-4} (J_d^2 f(x) + J_c^2 f(x)).$

LEMMA 2. $H_c \subseteq Ker J_d$.

Proof. Let L be the space of smooth functions on G with compact support such that $f(x k_{\theta}) = f(x)$ for any orthogonal matrix $k_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

To prove Lemma we shall use the following known property of $H_c: L \subset H_c$, and L is total in H_c i.e. finite linear combinations of the functions $T(x) f, x \in G$, $f \in L$, form a dense subspace of H_c . Therefore it is enough to verify that $L \subset Ker$ J_d i.e. that $J_d f = 0$ for any $f \in L$.

lf $f \in L$ then

$$J^{(\lambda)}f(x) = \int_{G} f(y) \left| Tr(x^{-1}y) \right|^{\lambda} dy = \int_{G} f(y) \left| Tr(x^{-1}yk_{\theta}) \right|^{\lambda} dy$$

for any θ . Therefore,

$$J^{(\lambda)}f(x) = (2\pi)^{-1} \int_0^{2\pi} \int_G f(y) \left| Tr(zk_{\theta}) \right|^{\lambda} dy d\theta,$$

where $z = x^{-1}y = \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix}$. Since $Tr(zk_{\theta}) = (z_1 + z_4) \cos \theta + (z_3 - z_2)$ sin θ , it follows that

$$\int_{0}^{2\pi} |Tr(zk_{\theta})|^{\lambda} d\theta = \int_{0}^{2\pi} |(z_{1} + z_{4})\cos\theta + (z_{3} - z_{2})\sin\theta|^{\lambda} d\theta =$$

$$= [(z_1 + z_4)^2 + (z_3 - z_2)^2]^{\lambda/2} \int_0^{2\pi} |\cos \theta|^{\lambda} d\theta =$$

$$= 2 \sqrt{\pi} \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)} [(z_1 + z_4)^2 + (z_3 - z_2)^2]^{\lambda/2}.$$

Hence

(6)
$$J^{(\lambda)}f(x) = \pi^{-1/2} \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)} \int_{G} \left[(z_1 + z_4)^2 + (z_3 - z_2)^2\right]^{\lambda/2} f(y) dy$$

where $z = x^{-1}y$. Note that $(z_1 + z_4)^2 + (z_3 - z_2)^2 \ge 4$ on G and so the integral in (6) converges for any $x \in G$, $\lambda \in \mathbb{C}$. But

$$\frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)} = 0,$$

so $J_d f = J^{(-2)} f = 0$.

REMARK. Note that $J^{(\lambda)}f = 0$ for $f \in L$ and any $\lambda = -2k$, k = 1, 2, ...Now we establish the connection of J_c with the operator of "horospheric transform"

 \mathscr{F} on G. By definition, \mathscr{F} assigns to each function f on G its integrals over t two-sided classes (horospheres) $g_1^{-1} Z g_2$ where Z is the subgroup of matrices the form $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. If G is treated as the surface

$$x_1 x_4 - x_2 x_3 = 1$$

in \mathbb{R}^4 then the classes $g_1^{-1} Z g_2$ correspond to the line generators of the surface; they have the equations

$$\alpha_1 x_1 + \alpha_2 x_3 = \beta_1$$

$$\alpha_1 x_2 + \alpha_2 x_4 = \beta_2$$

where $(\alpha_1, \alpha_2) \neq 0, (\beta_1, \beta_2) \neq 0$. The operator \mathscr{F} can be defined by

$$\mathcal{F}f(\alpha_1, \alpha_2; \beta_1, \beta_2) =$$

$$= \int_G f(x) \,\delta(\alpha_1 x_1 + \alpha_2 x_3 - \beta_1) \,\delta(\alpha_1 x_2 + \alpha_2 x_4 - \beta_2) \,dx$$

where $\delta()$ is the delfa function.

It is known [1] that $H_d \subset Ker \mathscr{F}$.

LEMMA 3. The operator J_c can be expressed as the composition $J_c = I \circ S$ where \mathcal{F} is the horospheric transform, and I acts on the functions $\varphi = \mathcal{F}f$

$$I\varphi(x) = \int_{-\infty}^{+\infty} \int_{-\pi/2}^{\pi/2} \varphi(e^{-t/2} \cos \theta, e^{-t/2} \sin \theta;$$

$$e^{t/2} (x_1 \cos \theta - x_3 \sin \theta), \ e^{t/2} (x_2 \cos \theta - x_4 \sin \theta)$$

$$\cdot sh^{-2} t \cdot cht \ d\theta \ dt, \qquad x \in G,$$

where the integral over t should be understood in the regularized sense.

The proof is straightforward.

COROLLARY. $H_d \subset Ker J_c$.

REFERENCES

- [1] I.M. GELFAND, M.I. GRAEV, N. Ya. VILENKIN Integral geometry and representation theory. Academic Press, New York, 1966.
- [2] I.M. GELFAND, S.G. GINDIKIN Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations. Funct. anal. and appl., 1977, 11, No. 4, 19-27.
- [3] I.M. GELFAND, S.G. GINDIKIN, M.I. GRAEV Integral geometry in affine and projective spaces. J. Soviet Math. 18 (1982) 39-167.

Manuscript received: August 14, 1988.