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Abstract. The separationof continuousand discretespectrain regular representa-
tion of PSL(2,IR) is constructedwith methodsofintegralgeometry.

1. Let H be theHubertspaceof functionson the groupPSL(2,IR) = SL(2, IR)/

{±i} with norm

(1) MfII~= fJf(xI2~~

where d.x is an invariant measure, and let T denotethe regularrepresentation

of PSL(2, IR) in H:

(T(x)f)(y) =f(yx), x, y EPSL(2, IR).

It is known [1] that T is decomposedinto irreduciblerepresentationsof conti-
nuousand discreteseries.Thus H is direct sum of invariantsubspaces,H = H~e
Hd, where H~is decomposedinto representationsof continuousseries,and

Hd into representationsof cliscret~series. The problem is to constructthis de-
compositionexplicitly: The projectorsP~: H-+ H~,~d :H—~-Hdareconstructed
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in [2]. it turns out that methodsof integral geometryallow one to construct
simpler operatorsJ~:H-+H, ~d :H-+Hd, such that ~ ~ (~d~=~d’

Let us formulate the main resultsof the paper.Later on we interpretH as the

spaceof evenfunctionson SL(2, IR) = G.
We define the following operatorson the subspaceD C H of even C~°

functionson G with compactsupport:

(~f)(x) = fG~~~1Tr (x1y) dy,

(~D(x) = f f(y) Tr (x1ye) j dy, e = (-~0)

where X E ~r. Both integralsconvergeand are analytic functions of X in the

regionReX> 0 for any f E D, x E G. For Re X <0 they aredefinedby analytic
continuationw.rt. X.

We put ~d = j(—2) j = J~2)~Evidently all operatorsJ(’), Jo’), in particular

andJ commutewith representationoperatorsT(x).

THEOREM l.ForanyfEDwe have:

II ~ +11 JIll’2 (2~r)~II fll 2,

whereII II is the norm in I-I.

COROLLARY. The operators~d’ ~ can be extendedto boundedoperatorson H.

THEOREM 2. JdH= “d J~H= H~(andsoJdHC = 0, JCHd = 0).

THEOREM 3. = (27r)4 ~d’ ~ = (2~r)4P~,where~d andP~are projectors
ontoHd cudH~respectively.

Proofsaregiven in section3.

2. Now we introducethe generalizedRadon transform~ relatedto the pro-

jective space F3 and establishits connectionwith operators~ Let F be
the spaceof C~-functionson iR~\ 0 satisfyingthehomogeneitycondition

(2) f(Xx)=K2f(x) forany X~0

Note [3] that F can be ingerpretedas the spaceof smoothsectionsof certain
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line bundleover F3.
We definethe scalarproducton F to be

(f
1,f2)= f f1(x)f2(x)w(x),1r

where w(x) = x
1 ~2 A dx3 A dx4 — x2 dx~A dx3 A dx4 + x3 dx1 A ~ A

dx4 — X4 dx1 A dX2 A cix3 (*)~The integral is over any surfaceF C 1R~\ 0

meeting at one point almost every ray through 0; the homogeneitycondition

(2) implies that the integral is independentof F. Let F denotethe 1-lilbert space
which is the completionofF w.r.t. the norm IlfIl = (f~f)”

2-
We introducethesymmetricbilinear form on JR4 by

(x,y)=x
1y4 —x2y3 —x3y2 +x4y1

and definethe generalizedRadontransformoff E F to be

~f(x) = (2~2 fr f(y) (x, y)
2w(y),

where the integral should be understoodin regularizedsense,see [3]. The inte-

graldoesnot dependon choiceof F. it is easyto seethat ~fE F(**).
it is known [31that II ~ f = f for f E F, and that ~ 2 = id, the identity

operator.Therefore,~ : F —~ F is an isomorphism,and~ extendsto the invo-
lutive unitary operatoron F:

To find the connectionof ~ with the operator~ we use anotherreali-
zation of the spaceF. For this we interpreta point (x

1, x2, x3, x4) E IR’~as the

matrix 1 2 then (x, x) = 2 det x.
x3 x4

(*2 In otherwordsw(x) is the internalproductof the volumeform dx~A A dx3 A dx4

in lR and the radialvectorfield X = ~ X1aIaXf

(**) The ordinary Radontransformfor F
3 actson thespaceof functionson IR’ \ 0 which

arehomogeneousof degree(.— 3) asfollows:

3tflx) = f(y) ~((x,y>) w(y),

where ~(~)is the delta-function,see [3]; the choice of a bilinear form (x, y) is inessential.
The connection of this transform with the classical Radon transform in three-dimensional
affinespacecan alsobefoundin [3].
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Choose F to be the pair of surfaces(x, x) = 2, and (x, x) = — 2, i.e. in our

interpretationF = G U eG, e = ( ~~is the ~arietyof matriceswith determi-

nant ±1. To eachf E F we associateits restrictionon F thusrealizingF as the

spaceof even functions on F. Note that w(y) = dy is an invariant
measureon G, and that (c,y)=±Tr(yx~)if det x = ±1. It follows that in this

new realization of F the norm and the operator ~ take the following form:

(3) llfll2 fG1f~12 dx +f f(ex)l 2

(4) ~f(x) = (27r)’2 f(y) (Tr(yx~ ))_2 dy +

+ (2sr12 .f(ey) (Tr(eyx~ ))~2dy

JG

We define the embeddingD -+F, H -+F assigningto eachfEHthefunction

on F which is equal to f(x) if det x = 1, and equalto zero if det x — 1. By

(1) and (3) theseembeddingare isometric.By (4) for anyfED we have

(5) ~f(x) = (2~2 f f(y) (Tr(yx~))_2 dy, det x = ±1.

Henceby definition of and we have

PROPOSITION.Jdf(x) = (2it)2 ~ f(x), JJ(x) = (7~)2 ~f(ex) for any f E D,
xESL(2,IR). .

3. Now we prove the theorems.Theorem 1 follows at once from (3), uni-

tarity of ~ andthe propositionjust proven, in fact forfE D wehave:

llfll2 =lI~fll2 = f l~f(x)l2 ~ f 2 ~ =

= (2~~(fG lJdf(x)l 2 dx +IGIJcf(x)l 2~) =
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= (2irY4( II ~df II 2~ll~~fII 2)

Theorems2 and 3 follow from the nextlemmas1 - 3.

LEMMA 1. (2ir~4~ + ~ = id.

Proof LetfED,so=~f. Since.~2=id,wehavef=.~,i.e.

f(x) = (2~2 fw(~)(Tr(yx’ ))_2 dy +

+ (2~)_2f~(e~)(Tr(eyx’ ))~2dy =

= (2~~f Jdf(y)(TT(yx~))2dy +

+(2~~f ~ (Tr x~))2 dy=

= (2ir)~(J
4~Jtx) + J~J~x)).

LEMMA 2.H~CKerJd.

Proof Let L be the spaceof smooth functions on G with compactsupport

cosO sinO
suchthat f(x k0)= f(x) for any orthogonalmatnx k0 = —sin o ccs e

To prove Lemma we shall use the following known propertyof H~:L C

andL is total in H~i.e. finite linear combinationsof the functionsT(x)f x E G,

f E L, form a densesubspaceof H~.Thereforeit is enoughto verify that L C Ker

i.e. that 0 for anyfEL.

lffEL then

J~f(x)= fG xdYff(Y)lTr(x_lk)lxd

for any 0. Therefore,
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r
J~f(x)= (2~’ j ] f(~)lTr(zk6)JXdy do,

0 G

where z = x~
1y= (~1 22) . Since Tr(zk

8) = (z~+ z4) cos 0 + (23 — 22)

sin 0, it follows that

Tr(zk0) I XdO = f2fl J + z~)cos U + (z3 —22) sin0 lXdO

ç2~

= [(z1+ 24) + (23 _Z2)1/J I cos OlxdO

0

X+1
2

= 2 [(21 ~24) + (23 —22)1/.
A+2

F
2

Hence

X+l
F 2

(6) J~f(x)= ~-1f2 (X ±2) L [(z1+ z4 )2 + (z3 — z2)
2 ]~2f(y~y

wherez = x1 y. Note that (z
1 + 24)2 + (23 — z2 )2 ~ 4 on G andso theintegral

in (6) convergesfor anyx E G, A E if. But

2 =0

X+2
I,

2 X=—2

soJdf=J~
2~f=0.

REMARK. Note thatJ(X )f = 0 forf EL andany A = — 2k, k = 1, 2....

Now we establishtheconnectionof withtheoperatorof “horospherictransform”
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.~onG. By definition, ~ assignsto each functionf on G its integrals over t

two-sidedclasses(horospheres)gj’ Z g2 where Z is the subgroup of matrices
1 t

the form . if G is treatedas the surface

x,x4 —x2x3= 1

in JR
4 then the classesg~Z g

2 correspond to the line generators of U
surface, they have the equations

a1x1 +c12x3 =~3~

a1x2 +a2X4 ~2’

where (a1 , a2) ~ 0, (~3~, 132)~ 0. The operator ~ can be defined by

a2 ~

=f ~x)~(a1x1 +a2x3—131) ~(a1x2 + a2x4

where ~( ) is thedelfa function.

ltisknown [1] thatHd CKer~.

LEMMA 3. The operator J~can be expressed as the composition J~= I e

where ~ is the horospherictransform, and I acts on the functions p =

(+~ (IT/2

I~o(x)=J j p(e~’
2cosO,et/2 sin 0;

—~ —ir/2

et/2(x, cos0—x
3sinO), ett

2(x
2cos0— ~ sin0) -

.s/f
2t.chtdOdt, xEG,

where the integral over t should be understood in the regularized sense.

The proof is straightforward.

COROLLARY.HdC KerJ.
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