Integral geometry and separation of continuous and discrete spectra in regular representation of PSL (2, R)

M.I. GRAEV
Keldysh Institute of Applied Mathematics
Miusskaya Sq 4
125047 Moscow A-47 USSR
Dedicated to I.M. Gelfand
on his 75th birthday

Abstract

The separation of continuous and discrete spectra in regular representation of PSL($2, \mathbb{R})$ is constructed with methods of integral geometry.

1. Let H be the Hilbert space of functions on the group $\operatorname{PSL}(2, \mathbb{R})=S L(2, \mathbb{R}) /$ $\{ \pm 1\}$ with norm

$$
\begin{equation*}
\|f\|^{2}=\int|f(x)|^{2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

where $\mathrm{d} x$ is an invariant measure, and let T denote the regular representation of $\operatorname{PSL}(2, \mathbb{R})$ in H :

$$
(T(x) f)(y)=f(y x), x, y \in \operatorname{PSL}(2, \mathbb{R}) .
$$

It is known [1] that T is decomposed into irreducible representations of continuous and discrete series. Thus H is direct sum of invariant subspaces, $H=H_{c} \oplus$ H_{d}, where H_{c} is decomposed into representations of continuous series, and H_{d} into representations of discrete series. The problem is to construct this decomposition explicitly: The projectors $P_{c}: H \rightarrow H_{c}, P_{d}: H \rightarrow H_{d}$ are constructed
in [2]. It turns out that methods of integral geometry allow one to construct simpler operators $J_{c}: H \rightarrow H_{c}, J_{d}: H \rightarrow H_{d}$, such that $\left(J_{c}\right)^{2}=P_{c},\left(J_{d}\right)^{2}=P_{d}$. Let us formulate the main results of the paper. Later on we interpret H as the space of even functions on $S L(2, \mathbb{R})=G$.

We define the following operators on the subspace $D \subset H$ of even C^{∞} functions on G with compact support:

$$
\begin{aligned}
& \left(f^{(\lambda)} f\right)(x)=\int_{G} f(y)\left|\operatorname{Tr}\left(x^{-1} y\right)\right|^{\lambda} \mathrm{d} y, \\
& \left(\hat{J}^{(\lambda)} f\right)(x)=\int_{G} f(y)\left|\operatorname{Tr}\left(x^{-1} y \epsilon\right)\right|^{\lambda} \mathrm{d} y, \quad \epsilon=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

where $\lambda \in \mathbb{C}$. Both integrals converge and are analytic functions of λ in the region $R e \lambda>0$ for any $f \in D, x \in G$. For $R e \lambda<0$ they are defined by analytic continuation w.r.t. λ.

We put $J_{d}=J^{(-2)}, J_{c}=\hat{J}^{(-2)}$. Evidently all operators $J^{(\lambda)}, \vec{J}^{(\lambda)}$, in particular J_{d} and J_{c} commute with representation operators $T(x)$.

THEOREM 1. For any $f \in D$ we have:

$$
\left\|J_{d} f\right\|^{2}+\left\|J_{c} f\right\|^{2}=(2 \pi)^{4}\|f\|^{2}
$$

where $\|\cdot\|$ is the norm in H.
COROLLARY. The operators J_{d}, J_{c} can be extended to bounded operators on H.
THEOREM 2. $J_{d} H=H_{d}, J_{c} H=H_{c}$ (and so $J_{d} H_{c}=0, J_{c} H_{d}=0$).
THEOREM 3. $\left(J_{d}\right)^{2}=(2 \pi)^{4} P_{d},\left(J_{c}\right)^{2}=(2 \pi)^{4} P_{c}$, where P_{d} and P_{c} are projectors onto H_{d} and H_{c} respectively.

Proofs are given in section 3.
2. Now we introduce the generalized Radon transform \mathscr{R} related to the projective space \mathbb{P}^{3} and establish its connection with operators J_{c}, J_{d}. Let F be the space of C^{∞}-functions on $\mathbb{R}^{4} \backslash 0$ satisfying the homogeneity condition

$$
\begin{equation*}
f(\lambda x)=\lambda^{-2} f(x) \text { for any } \lambda \neq 0 \tag{2}
\end{equation*}
$$

Note [3] that F can be ingerpreted as the space of smooth sections of certain
line bundle over \mathbb{P}^{3}.
We define the scalar product on F to be

$$
\left(f_{1}, f_{2}\right)=\int_{\Gamma} f_{1}(x) \overline{f_{2}(x)} \omega(x),
$$

where $\omega(x)=x_{1} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{4}-x_{2} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{4}+x_{3} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2} \wedge$ $\mathrm{d} x_{4}-x_{4} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}\left({ }^{*}\right)$. The integral is over any surface $\Gamma \subset \mathbb{R}^{4} \backslash 0$ meeting at one point almost every ray through 0 ; the homogeneity condition (2) implies that the integral is independent of Γ. Let \bar{F} denote the Hilbert space which is the completion of F w.r.t. the norm $\|f\|=(f, f)^{1 / 2}$.

We introduce the symmetric bilinear form on \mathbb{R}^{4} by

$$
\langle x, y\rangle=x_{1} y_{4}-x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}
$$

and define the generalized Radon transform of $f \in F$ to be

$$
\mathscr{R} f(x)=(2 \pi)^{-2} \int_{\Gamma} f(y)\langle x, y\rangle^{-2} \omega(y),
$$

where the integral should be understood in regularized sense, see [3]. The integral does not depend on choice of Γ. It is easy to see that $\mathscr{R} f \in F\left({ }^{* *}\right)$.

It is known [3] that $\|\mathscr{R} f\|=\|f\|$ for $\mathrm{f} \in F$, and that $\mathscr{R}^{2}=i d$, the identity operator. Therefore, $\mathscr{R}: F \rightarrow F$ is an isomorphism, and \mathscr{R} extends to the involutive unitary operator on \bar{F}.

To find the connection of \mathscr{R} with the operator $J_{c^{\prime}}, J_{d}$ we use another realization of the space F. For this we interpret a point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ as the matrix $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$; then $\langle x, x\rangle=2 \operatorname{det} x$.

[^0]Choose Γ to be the pair of surfaces $\langle x, x\rangle=2$, and $\langle x, x\rangle=-2$, i.e. in our interpretation $\Gamma=G \cup \epsilon G, \epsilon=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, is the variety of matrices with determinant ± 1. To each $f \in F$ we associate its restriction on Γ thus realizing F as the space of even functions on Γ. Note that $\left.\omega(y)\right|_{(y, y)=2}=\mathrm{d} y$ is an invariant measure on G, and that $\langle x, y\rangle= \pm \operatorname{Tr}\left(y x^{-1}\right)$ if det $x= \pm 1$. It follows that in this new realization of F the norm and the operator \mathscr{R} take the following form:

$$
\begin{align*}
& \|f\|^{2}=\int_{G}|f(x)|^{2} \mathrm{~d} x+\int_{G}|f(\epsilon x)|^{2} \mathrm{~d} x \tag{3}\\
& \mathscr{R} f(x)=(2 \pi)^{-2} \int_{G} f(y)\left(\operatorname{Tr}\left(y x^{-1}\right)\right)^{-2} \mathrm{~d} y+ \\
& +(2 \pi)^{-2} \int_{G} f(\epsilon y)\left(\operatorname{Tr}\left(\epsilon y x^{-1}\right)\right)^{-2} \mathrm{~d} y
\end{align*}
$$

We define the embedding $D \rightarrow F, H \rightarrow \bar{F}$ assigning to each $f \in H$ the function on Γ which is equal to $f(x)$ if $\operatorname{det} x=1$, and equal to zero if $\operatorname{det} x=-1$. By (1) and (3) these embedding are isometric. By (4) for any $f \in D$ we have

$$
\begin{equation*}
\mathscr{R} f(x)=(2 \pi)^{-2} \int_{G} f(y)\left(\operatorname{Tr}\left(y x^{-1}\right)\right)^{-2} \mathrm{~d} y, \operatorname{det} x= \pm 1 \tag{5}
\end{equation*}
$$

Hence by definition of J_{c} and J_{d} we have
PROPOSITION. $J_{d} f(x)=(2 \pi)^{2} \mathscr{R} f(x), J_{c} f(x)=(2 \pi)^{2} \mathscr{R} f(\epsilon x)$ for any $f \in D$, $x \in S L(2, \mathbb{R})$.
3. Now we prove the theorems. Theorem 1 follows at once from (3), unitarity of \mathscr{R} and the proposition just proven. \ln fact for $f \in D$ we have:

$$
\begin{aligned}
& \|f\|^{2}=\|\mathscr{R} f\|^{2}=\int_{G}|\mathscr{R} f(x)|^{2} \mathrm{~d} x+\int_{G}|\mathscr{R} f(\epsilon x)|^{2} \mathrm{~d} x= \\
& =(2 \pi)^{-4}\left(\int_{G}\left|J_{d} f(x)\right|^{2} \mathrm{~d} x+\int_{G}\left|J_{c} f(x)\right|^{2} \mathrm{~d} x\right)=
\end{aligned}
$$

$$
=(2 \pi)^{-4}\left(\left\|J_{d} f\right\|^{2}+\left\|J_{c} f\right\|^{2}\right) .
$$

Theorems 2 and 3 follow from the next lemmas 1-3.
LEMMA $1 .(2 \pi)^{-4}\left(\left(J_{d}\right)^{2}+\left(J_{c}\right)^{2}\right)=i d$.
Proof. Let $f \in D, \varphi=\mathscr{R} f . \quad$ Since $\mathscr{R}^{2}=i d$, we have $f=\mathscr{R} \varphi$, i.e.

$$
\begin{aligned}
f(x) & =(2 \pi)^{-2} \int_{G} \varphi(y)\left(\operatorname{Tr}\left(y x^{-1}\right)\right)^{-2} \mathrm{~d} y+ \\
& +(2 \pi)^{-2} \int_{G} \varphi(\epsilon y)\left(\operatorname{Tr}\left(\epsilon \mu x^{-1}\right)\right)^{-2} \mathrm{~d} y= \\
& =(2 \pi)^{-4} \int_{G} J_{d} f(y)\left(\operatorname{Tr}\left(y x^{-1}\right)\right)^{-2} \mathrm{~d} y+ \\
& +(2 \pi)^{-4} \int_{G} J_{c} f(y)\left(\operatorname{Tr}\left(\epsilon y x^{-1}\right)\right)^{-2} \mathrm{~d} y= \\
& =(2 \pi)^{-4}\left(J_{d}^{2} f(x)+J_{c}^{2} f(x)\right) .
\end{aligned}
$$

LEMMA 2. $H_{c} \subset \operatorname{Ker} J_{d}$.
Proof. Let L be the space of smooth functions on G with compact support such that $f\left(x k_{\theta}\right)=f(x)$ for any orthogonal matrix $k_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$.

To prove Lemma we shall use the following known property of $H_{c}: L \subset H_{c}$, and L is total in H_{c} i.e. finite linear combinations of the functions $T(x) f, x \in G$, $f \in L$, form a dense subspace of H_{c}. Therefore it is enough to verify that $L \subset \mathrm{Ker}$ J_{d} i.e. that $J_{d} f=0$ for any $f \in L$.
lf $f \in L$ then

$$
J^{(\lambda)} f(x)=\int_{G} f(y)\left|\operatorname{Tr}\left(x^{-1} y\right)\right|^{\lambda} \mathrm{d} y=\int_{G} f(y)\left|\operatorname{Tr}\left(x^{-1} y k_{\theta}\right)\right|^{\lambda} \mathrm{d} y
$$

for any θ. Therefore,

$$
J^{(\lambda)} f(x)=(2 \pi)^{-1} \int_{0}^{2 \pi} \int_{G} f(y)\left|\operatorname{Tr}\left(z k_{\theta}\right)\right|^{\lambda} \mathrm{d} y \mathrm{~d} \theta
$$

where $z=x^{-1} y=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$. Since $\operatorname{Tr}\left(z k_{\theta}\right)=\left(z_{1}+z_{4}\right) \cos \theta+\left(z_{3}-z_{2}\right)$ $\sin \theta$, it follows that

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|\operatorname{Tr}\left(z k_{\theta}\right)\right|^{\lambda} \mathrm{d} \theta=\int_{0}^{2 \pi}\left|\left(z_{1}+z_{4}\right) \cos \theta+\left(z_{3}-z_{2}\right) \sin \theta\right|^{\lambda} \mathrm{d} \theta= \\
& =\left[\left(z_{1}+z_{4}\right)^{2}+\left(z_{3}-z_{2}\right)^{2}\right]^{\lambda / 2} \int_{0}^{2 \pi}|\cos \theta|^{\lambda} \mathrm{d} \theta= \\
& =2 \sqrt{\pi} \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)}\left[\left(z_{1}+z_{4}\right)^{2}+\left(z_{3}-z_{2}\right)^{2}\right]^{\lambda / 2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
J^{(\lambda)} f(x)=\pi^{-1 / 2} \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)} \int_{G}\left[\left(z_{1}+z_{4}\right)^{2}+\left(z_{3}-z_{2}\right)^{2}\right]^{\lambda / 2} f(y) \mathrm{d} y \tag{6}
\end{equation*}
$$

where $z=x^{-1} y$. Note that $\left(z_{1}+z_{4}\right)^{2}+\left(z_{3}-z_{2}\right)^{2} \geqslant 4$ on G and so the integral in (6) converges for any $x \in G, \lambda \in \mathbb{C}$. But

$$
\left.\frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+2}{2}\right)}\right|_{\lambda=-2}=0
$$

so $J_{d} f=J^{(-2)} f=0$.
REMARK. Note that $J^{(\lambda)} f=0$ for $f \in L$ and any $\lambda=-2 k, k=1,2, \ldots$
Now we establish the connection of J_{c} with the operator of "horospheric transform"
\mathscr{F} on G. By definition, \mathscr{F} assigns to each function f on G its integrals over t two-sided classes (horospheres) $g_{1}^{-1} Z g_{2}$ where Z is the subgroup of matrices the form $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$. If G is treated as the surface

$$
x_{1} x_{4}-x_{2} x_{3}=1
$$

in \mathbb{R}^{4} then the classes $g_{1}^{-1} Z g_{2}$ correspond to the line generators of tl surface; they have the equations

$$
\begin{aligned}
& \alpha_{1} x_{1}+\alpha_{2} x_{3}=\beta_{1} \\
& \alpha_{1} x_{2}+\alpha_{2} x_{4}=\beta_{2}
\end{aligned}
$$

where $\left(\alpha_{1}, \alpha_{2}\right) \neq 0,\left(\beta_{1}, \beta_{2}\right) \neq 0$. The operator \mathscr{F} can be defined by

$$
\begin{aligned}
& \mathscr{F} f\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right)= \\
& =\int_{G} f(x) \delta\left(\alpha_{1} x_{1}+\alpha_{2} x_{3}-\beta_{1}\right) \delta\left(\alpha_{1} x_{2}+\alpha_{2} x_{4}-\beta_{2}\right) \mathrm{d} x
\end{aligned}
$$

where $\delta()$ is the delfa function.
It is known [1] that $H_{d} \subset \operatorname{Ker} \mathscr{F}$.
LEMMA 3. The operator J_{c} can be expressed as the composition $J_{c}=I \circ G$ where \mathscr{F} is the horospheric transform, and I acts on the functions $\varphi=\mathscr{F}_{f}$

$$
\begin{aligned}
& I \varphi(x)=\int_{-\infty}^{+\infty} \int_{-\pi / 2}^{\pi / 2} \varphi\left(e^{-t / 2} \cos \theta, e^{-t / 2} \sin \theta\right. \\
& e^{t / 2}\left(x_{1} \cos \theta-x_{3} \sin \theta\right), e^{t / 2}\left(x_{2} \cos \theta-x_{4} \sin \theta\right) \\
& \cdot \operatorname{sh}^{-2} t \cdot \text { cht } \mathrm{d} \theta \mathrm{~d} t, \quad x \in G
\end{aligned}
$$

where the integral over t should be understood in the regularized sense.

The proof is straightforward.
COROLLARY. $H_{d} \subset \operatorname{Ker} J_{c}$.

REFERENCES

[1] I.m. Gelfand, M.I. Graev, N. Ya. Vilenkin Integral geometry and representation theory. Academic Press, New York, 1966.
[2] I.M. GELFAND, S.G. GINDIKIN Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations. Funct. anal. and appl., 1977, 11, No. 4, 19-27.
[3] I.M. Gelfand, S.G. Gindikin, M.I. GraEv Integral geometry in affine and projective spaces. J. Soviet Math. 18 (1982) 39-167.

Manuscript received: August 14, 1988.

[^0]: (*) In other words $\omega(x)$ is the internal product of the volume form $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{4}$ in \mathbb{R}^{4} and the radial vector field $X=\Sigma x_{i} \partial / \partial x_{i}$.
 $\left({ }^{* *}\right)$ The ordinary Radon transform for \mathbb{P}^{3} acts on the space of functions on $\mathbb{R}^{4} \backslash 0$ which are homogeneous of degree (-3) as follows:

 $$
 \nexists f(x)=\int_{\Gamma} f(y) \delta(\langle x, y\rangle) \omega(y),
 $$

 where $\delta(\cdot)$ is the delta-function, see [3]; the choice of a bilinear form $\langle x, y\rangle$ is inessential. The connection of this transform with the classical Radon transform in three-dimensional affine space can also be found in [3].

