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Abstract. The separation of continuous and discrete spectra in regular representa-
rion of PSL{2, R} is constructed with methods of integral geometry.

1. Let H be theHilbert space of functions on the group PSL(2, R) = SL(2, R)/
{# 1} with norm

(1) 1712 =I]f(X)|2dx,

where dx is an invariant measure, and let 7 denote the regular representation
of PSL(2,IR) in H:

(Tx)f) (y) = fyx), x, y EPSL(2, R).

It is known [1] that T is decomposed into irreducible representations of conti-
nuous and discrete series. Thus H is direct sum of invariant subspaces, H = H_ o
H 4> Where H_is decomposed into representations of continuous series, and
H, into representations of discretg series. The problem is to counstruct this de-

composition explicitly: The projectors Pc ‘H—> H, Pd :H—*Hd are constructed
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in [2]. It turns out that methods of integral geometry allow one to construct
simpler operators Jc ‘H —>Hc, Jd :H—>Hd, such that (Jc)2 = Pc, (Jd)2 = Pd.
Let us formulate the main results of the paper. Later on we interpret H as the
space of even functions on SL(2, R) = G. ‘

We define the following operators on the subspace D C H of even C=
functions on G with compact support:

(J“)f)(x)=/ﬂy)| Tr (x"1y)|* dy,
G

. ~10
(Jmf)(X)=ff(y)lTr(X'lyE)lkdy, €= ( o 1),
G

where A € € . Both integrals converge and are analytic functions of A in the
region ReX > O for any f € D, x € G. For Re A\ <0 they are defined by analytic
continuation w.r.t. A.

We put J, = J=) J, = J=2) Evidently all operators J®), M), in particular
J; and J_ commute with representation operators T(x).

THEOREM 1. For any f € D we have:
172012 + 7512 = ot | 1) %,
where || -| is the norm in H.

COROLLARY. The operators J;, J , can be extended to bounded operators on H.

THEOREM 2. J,H=H,,J H=H_ (andsoJ,H, =0,J H, =0).

THEOREM 3. (J, )2 = (2m)* P, (Jc)2 = (217)4Pc, where P, and P_ are projectors
onto H; ad H_ respectively.

Proofs are given in section 3.

2. Now we introduce the generalized Radon transform £ related to the pro-
jective space P> and establish its connection with operators J o /g Lot F be
the space of C~ functions on R*\0 satisfying the homogeneity condition

(2) fOx) = X" 2f(x) forany A#0

Note [3] that F can be ingerpreted as the space of smooth sections of certain
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line bundle over IP? .
We define the scalar product on F to be

;. 1) =f £, ) £, () w(x),
T

where w(x) =X, dx2 /\dx3 /\dx4 -x, dx1 /\d)c3 /\clx4 + x, dx1 /\dx2 A
dx, — x, dx, A dx, A dxg (*). The integral is over any surface I' C IR* \ 0
meeting at one point almost every ray through 0; the homogeneity condition
(2) implies that the integral is independent of I'. Let F denote the Hilbert space
which is the completion of F w.r.t. the norm || f|| = (f, HYL,

We introduce the symmetric bilinear form on IR* by

oY) =Xy =Xy V3 T X3V, XYy

and define the generalized Radon transform of f € F to be

R fix) = (2m)~? f ) {x, vy 2 w(p),

r

where the integral should be understood in regularized seunse, see [3]. The inte-
gral does uot depend on choice of . 1t is easy to see that & f € F (**).

1t is known [3] that H.@fﬂ = | f| for f € F, and that R? = id the identity
operator. Therefore, & : F = F is an isomorphism, and & extends to the invo-
lutive unitary operator on F.

To find the connection of # with the operator J . J; we use another reali-
zation of the space F. For this we interpret a point (xl, Xy, Xy, x4) € IR* as the

[x %,
matrix ;then {x, x) = 2 det x.
Xy X,

(*2 In other words w(x) is the internal product of the volume form dx; A dx, A dx; A dx,
in R" and the radial vector field X = £ xia/axl.

(**) The ordinary Radon transform for P? acts on the space of functions on R*\ 0 which
are homogeneous of degree (— 3) as follows:

2 fix) = j ) 8((x, 1) w(),

r

where 8(-) is the delta-function, see [3]; the choice of a bilinear form (x, y) is inessential.
The connection of this transform with the classical Radon transform in three-dimensional
affine space can also be found in [3].
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Choose I' to be the pair of surfaces {x, x) = 2, and {x, x) = — 2, i.e. in our
. . -10
interpretation ' = G U €G, € = 0 1 , is the variety of matrices with determi-

nant * 1. To each f € F we associate its restriction on I' thus realizing F as the
space of even functions on I'. Note that w(y) | =2 = dy is an invariant
measure on G, and that (x,y)=+ Tr(yx"l) if det x = z 1. 1t follows that in this
new realization of F the norm and the operator Z take the following form:

3) ||fn'2:j |f(x)|2dx+[ | flex)| 2 dx,
G G
(4) R fix) = 2my? f ) (Tr(yx~1) "2 dy +
G

+(2n)2 f Rey) (Triepx™1))7% dy
G

We define the embedding D - F, H — F assigning to each f € H the function
on I' which is equal to f(x) if det x = 1, and equal to zero if det x = — 1. By
(1) and (3) these embedding are isometric. By (4) for any f € D we have

(5) Rflx) = Quny 2 f 567! (Tr(yx“l))_2 dy, detx = 1.
G

Hence by definition of JC and Jd we have

PROPOSITION.. J_f(x) = (21)* & f(x), J f(x) = (2m)* R fex) for any f € D,
x €SL(2, R). n

3. Now we prove the theorems. Theorem 1 follows at once from (3), uni-
tarity of # and the proposition just proven. In fact for f € D we have:

Hfll2=I|9?fH2=f

|2 fix)| * dx+f | R flex)|? dx =
G

G

= (2m)™* (f | J,fx) | % dx +f | J )| de) =
G G
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Theorems 2 and 3 follow from the next lemmas 1 - 3.
LEMMA 1. 2m)™* ((J,)? + (J)?) = id.

Proof Let f€D, o= R f. Since B2 =id, we have f=R ¢, i.e.

fix) = (2n)~? f e (Tr(px~1)" 2 dy +
G

+(2m)2 / o(ey) (Tr(exx1))"2dy =

Q

= @ny* / T, ) (Tr(px=1)y 2 dy +
G

+ Qm)* /ch(y) (Tr(e)‘)x‘l N ldy=
G

= @m)™* (JI fx) +J2 flx)).
LEMMA 2. Hc C KerJd.

Proof. Let L be the space of smooth functions on G with compact support

such that f(x k) = f(x) for any orthogonal matrix k, =(f:s;100 <S:1cnsee .

To prove Lemma we shall use the following known property of H,: L C H,
and L is total in A, ie. finite linear combinations of the functions T(x) f, x € G,
f € L, form a dense subspace of H,. Therefore it is enough to verify that L C Ker
J, i.e.thatde=O forany fE€ L.

If f€ L then

TN fx) = / f) | Trxy)| M ay =/f(y)[Tr(x_1yke)|"dy
G G

for any 6. Therefore,
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2
JMfxy = my? j f F)| Tr(zk )| *dv de,
0 G

el = (71 % - -
where z = x7'y = (z3 2, . Since Tr(zk,) = (z; +z,)cos b + (z; —2,)
sin 6, it follows that

2n 27
f |Tr(zk6)]"d6=/ ](21 +z4)cose+(z3—zz)sinf)]"d6=
0 0

2
= [z, +2,)% + (2, ——22)2]”2] [cos 8[*df =
0

A+1
o)
=2 \/n—__)\:z_ [z, +2,0° + (23 — 2, M2
r{ ——
2
Hence
A+ 1
()
(6) J(}‘)f(x)=1r—l'l2 ———):':5—/ [(Z1 +Z4)2 +(z3~22)2]}‘/2f(.V)dy
=g
2

where z = x"! . Note that (z1 +z, ¥ + (z5 — 22)2 2 4 on G and so the integral
in (6) converges forany x € G, A€ ¢ . But

(?\+1
r)
2
()\+2)
F ———
2 h==2

sonf=J(_2)f=0. =

=0,

REMARK . Note that J M f =0 forf€ELandany A= —2k k=1,2....
Now we establish the connection of J, with the operator of “horospheric transform”
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F on G. By definition, & assigns to each function f on G its integrals over t
twosided classes (horospheres) g7 1z g, where Z is the subgroup of matrices

1 1t
the form (0 1) . If G is treated as the surface

X X, =X, Xy =1

in R* then the classes g;l Z g, correspond to the line generators of tl
surface; they have the equations

X Fopxy =4
X, +a,Xx, =f,,
where (&, @,) # 0, (B, ,B,) # 0. The operator # can be defined by

Ffla,,a,;8,,8,) =

=/ Jix) 8oy x| +oz2x3.—-ﬁl) 5(0:1)62 +a,x, —Bz)dx.
G

where 8( ) is the delfa function.
1t is known [1] that H, C Ker &#.

LEMMA 3. The operator J, can be expressed as the composition Jc =Jod
where % isthe horospheric transform, and 7 acts on the functions ¢y = Ff

+ o /2
To(x) =f o(e™t? cos 6, /2 sin 6;
—e a2

e’/z(x1 cos 8 —x, sin 9), e'/z(x2 cos 6 — x, sin6) -
-sh™2¢t. cht d8 dt, x €G,

where the integral over ¢ should be understood in the regularized sense.
The proof is straightforward.

COROLLARY.Hd C Kech.
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